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Spin reorientation transitions in (NdxY1-x)2(FeyCo1-y)14B diluted 
systems are decribed based on free energy calculations for the model 
of two coupled sublattices ( rare earth metals sublattice and 3d metals  
sublattice). Spin reorientation temperatures are calculated, the 
temperature dependence of the tilting angle ( between c-axis and 
magnetization vector) is determined and spin phase diagrams are 
established. The obtained theoretical values are compared with the 
existing experimental data, showing a good agreement. The used 
method is very useful in constructing the magnetic phase diagrams for 
the diluted ternary and quaternary systems.  

 
 
Introduction. 
 
     The R2(Fe,Co)14B systems (R = rare earth) exhibit many interesting properties which are 
important both for fundamental and for applied research. After extensive studies of these 
systems, the large amount of measured data has been accumulated [1-3].  However, the 
description of the complex spin reorientation phenomena – which appear in these 
compounds very often -  is still far from being complete. Only non-diluted, parent 
compounds have been treated using CEF calculations and semi-phenomenological 
approach [4-6]. 
     The high magnetocrystalline anisotropy of the R- and 3d- metal sublattices and their 
different behaviour with temperature are the reasons for the two types of spin reorientation 
transitions observed in 2:14:1 compounds:  (1) a cone (or planar)-to-axis transition at low 
temperature, TSR1, and  (2) an axis-to-plane transition at high temperature, TSR2 . During 
these transitions the tilting angle, Θ, between c-crystallographic axis and the direction of 
the magnetization vector  is changing. For the axial arrangement of spins (along c-axis) this 
angle equals zero, for planar arrangement (spins in basal plane) the angle is 900, for conical 
arrangement 00<Θ<900. 
     Based on free energy calculations and using the model of the two coupled sublattices 
[4,5] we made an attempt to extend this method to more complicated (ternary and 
quaternary) systems and to describe one aspect of the spin reorientation phenomena in 
diluted  (NdxY1-x)2(FeyCo1-y)14B system , namely the temperature dependence of the tilting 
angle and the spin reorientation temperature dependence on composition. The values 



obtained from the calculations were used to construct the spin phase diagrams, which  were 
confronted with the available experimental data. 
 
 
Model description.      
 
     We used a simplified model [4,5] in which the magnetic atoms are separated into two 
coupled sublattices  (R- rare earth sublattice and 3d– metal sublattice). Each sublattice is 
treated in a different way.  
 

(1) The magnetic interaction between rare-earth atoms (R-R interaction) is 
neglected against the 3d-3d and R-3d interactions. This assumption enables to treat the rare-
earth sublattice as an assembly of isolated atoms, the magnetic free energy of which can be 
easily calculated from the energy levels corresponding to a particular set of crystal electric 
field (CEF) parameters. These parameters can be obtained from neutron spectroscopy. If an 
external field, B,  is present a Zeeman term should be added. 
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where Bn

m(i) are the crystal field parameters of the rare-earth atom at site i, On
m are Steven 

operators, J is the angular momentum and gJ is the Landé factor. 
 

(2) The previous assumption is inapplicable to the 3d sublattice. In this case, 
instead of tackling the difficult approach of energy bands, this sublattice is introduced in a 
phenomenological way: the magnetic anisotropy energy is transferred from the anisotropy 
constant K1 of a similar compound with a non magnetic rare-earth or the yttrium compound 
with a convenient temperature scaling to have the Curie temperature of the studied 
magnetic rare-earth compound at the right position. This anisotropy energy is not a free 
energy, but it is expected that the entropy term is negligible. An external field will 
contribute to the energy with a term –M•B, and in this case we also need the magnetization 
of the 3d sublattice, which is obtained from the yttrium compound with a convenient 
scaling [7]. 
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(3) The two magnetic sublattices are coupled with an associated exchange energy 

of the molecular magnetic field, Bmol, of the magnetization of the 3d-sublattice, M3d, acting 
on the magnetization of the rare-earth sublattice: 
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studied compound from the Curie temperature with the same assumption of negligible R-R 
interaction [4]. The molecular field is related to the exchange fields, Bex,  between magnetic 
moments For this part of the energy we need the magnetization of the 3d sublattice, which 
is obtained from the yttrium compound, and the coupling constant, nRFe. This can be 
deduced for the as  
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The hamiltonian is 
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where the temperature dependence of Bex is assumed to be that of the magnetization 
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Finally, the total free energy is 
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where the partition function Z(i) contains the contributions from (1), (2) and (7) four 
different sites for CEF calculations and the numerical factors appear because K1 is used in 
units per 3d atom, while M is used in units per formula unit.  
     In the calculation the free energy function  (or as pointed out above an approximate free 
energy function) is minimized with respect to Θ, with a given set of CEF parameters, 
magnetization and anisotropy constant of the yttrium compound and the coupling constant 
of the studied compound. This has been done in various instances for R2Fe14B with good 
results, that is, the input data obtained from independent experiments produce 
magnetization curves (temperature and field dependence) and spin reorientation 
temperatures correctly.  
     We have applied the above procedure to substitution compounds where one of the rare-
earth atoms is yttrium; (Nd,Y)2(Fe,Co)14B. Here we have to deal with various problems: 
 

(1) CEF parameters are only available for non-substituted compounds and therefore 
a procedure to estimate them for a particular substitution is needed. Both the (Nd,Y) and 
(Fe,Co) substitutions can affect the values of the CEF parameters. We will treat these 
substitutions in a different way. Since the R-R interaction is negligible, we will consider the 
contribution of each type of rare-earth separately (in this particular case this is more simple 
since Y is non magnetic); for each rare-earth the CEF-different site (four in the R2Fe14B 
structure) the partition function and free energy are computed and a concentration averaged 
is calculated. The effect of the (Fe,Co) substitution is introduced on the CEF parameters: 



for each rare-earth a Co concentration average is calculated form the CEF parameters of 
R2Fe14B and R2Co14B. 
 

(2) The magnetic anisotropy of the (Fe,Co) substitutions have to be introduced both 
with the concentration and the temperature dependence. This is done from data on 
Y2(Fe,Co)14B compounds. Since the available data correspond to a few given temperatures 
(usually room, liquid nitrogen and liquid helium), we have fitted the available data [7-11] 
with polynomials. 
 

(3) Also the concentration and temperature dependence of the magnetization of the 
yttrium compounds Y2(Fe,Co)14B is required for the exchange energy term and for the 
external field contribution to the free energy in the 3d sublattice. The same procedure was 
applied with available data in the literature  [10-14]. 

 
(4) Concerning the coupling constant, what is actually required is Bex(0). For 

substitution NdxY2-xFe14B, this value is constant within 1% for x=2 to x=1.2 and then 
decreases [15]. Values for Nd2Fe14B and Nd2Co14B can be found in [3,6,16]   
 
 
Calculation results. 
 
     The formative tests of the program were  performed on the Nd2Fe14B and Nd2Co14B 
compounds. The Fe-based compound exhibits only one transition (cone-to-axis), at the 
temperature TSR1 = 136 K (Fig.1.). The temperature dependence of the tilting angle Θ,  

 
Fig.1  The temperature dependence of the tilting angle for Nd2Fe14B 

 
generated from the calculations , was compared with the literature data [7,18]. This test 
showed a good agreement between the calculated and experimental data.  
 



     The Nd2Co14B compound exhibits two transitions (at low temperature ,TSR1, cone to axis 
transition  and at high temperature ,TSR2, an axis to plane transition ). The results of this test 
are shown in Fig.2. Two reorientations are reproduced in the temperature regions 30-60 K 
(cone to axis) and 425-440 K (axis to plane), in good agreement with the experimentally 
obtained data [ 1]. 

 
Fig.2 The teperature dependence of the tilting angle for Nd2Co14B obtained from 

calculations. 
  
     After the above tests, the substitution of Y in place of Nd was studied . It was obvious 
that Y addition into R– sublattice  should decrease the temperature region of axial 
arrangement. This is indeed clearly shown in Figs  3 and 4. For Y concentration larger than 
0.64 , the axial arrangement vanishes completely giving way to conical arrangement only.  
Finally the tilting angle reaches 900 for Y2Co14B and only the planar arrangement is shown , 
as experimentally observed for this compound . 

Figs. 3 and 4.  The calculated temperature dependencies of the tilting angle 
for (NdxY1-x)2Co14B system. 
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     When Fe is introduced into Nd2Co14B, the TSR1 increases rapidly ( Fig. 5)  and for Fe 
concentration  y> 0.408 the planar arrangement disappears. This is illustrated better on the 
temperature vs composition  phase diagram (Fig.6). The available experimental points [19] 
( black dots ) follow the calculated line quite reasonably, especially for the low temperature 
transition. 

 
Fig.5.The calculated temperature dependencies of the tilting angle for Nd2(FeyCo1-y)14B 

system. 

Fig.6. The calculated (solid line) and experimental (full circles) [19] spin phase diagram for 
Nd2(FeyCo1-y)14B system. 
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Fig.7.The combined calculated (solid lines) and experimental [8,20-22] spin phase diagram 
for (NdxY1-x)2(FeyCo1-y)14B.   Dotted line corresponds to y=0.5. 

 



 
     We also constructed the combined  phase diagrams in T vs x (Nd - composition) plane 
for different y (Fe - composition) values . These are shown in Fig.7.  The available 
experimental points [8,20,21] (indicated by black symbols)  confirm that the calculated 
curves reflect the  trend  quite well. 
     From the above results we conclude that the used method of calculations (although 
simplified and based on approximations)  is indeed able to describe the macroscopic 
anisotropy behaviour for the diluted ternary and quaternary  (Nd,Y)2(Fe,Co)14B systems. 
The calculations proved to be useful in constructing the magnetic phase diagrams.   
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